2021_I First proposal call for Νότος beamline #### Νότος Team Giovanni Agostini gagostini@cells.es Carlos Escudero cescudero@cells.es Dominique Heinis dheinis@cells.es Oriol Vallcorba ovallcorba@cells.es ## **Nότος**: description #### Scientific case - Hard X-ray beamline - Multi-activities capabilities: - → X-rays Absorption Spectroscopy (XAS) - → X-Rays Diffraction (XRD) - → metrology applications - Study of the electronic structure, short (XAS) and long range order (XRD): - → chemistry - → catalysis - → energy science - nanomaterial and condensed matter - environmental science - Focused on in situ and operando measurements on heterogeneous catalysis and electrochemistry - Tests and improvement of high precision mechanical components, performances of detector systems, carrying out new methodologies and concepts to improve beamline instruments | 1
H
hydrogen
1,008
1,0078, 1,00821 | 2 | | | к | -edge | | | | | | | 13 | 14 | 15 | 16 | 17 | He
helium | |---|---|----------------------|----------------------------|----------------------|--------------------------|-----------------------|------------------------|-------------------------|--------------------------|-----------------------|--------------------------|--|---------------------------------------|---|--|--|----------------------| | 3
Li
ithium
0.34
[6.508, 6.997]
11
Na | Be
beryllum
9,0122
12
Mg | L-edge | | | | | | | | | 13
Al | 6
C
carbon
12.211
[12.000, 12.012]
14
Si | 15
P | 8
O
0xyygen
15.960, 16.000]
16
S | 9
F
fluorine
13.998
17
CI | 10
Ne
neon
20.180
18
Ar | | | sodium
22.990 | magnesium
24.305
[24.304, 24.307] | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | -11 | 12 | aluminium
26,982 | silicon
20.005
[28.064, 28.086] | phosphorus
30,974 | Sulfur
32.00
[32.059, 32.076] | chlorine
35.45
[35.446, 35.457] | argon
39,948 | | 19
K
potassium | Ca
calcium | Sc
scandium | Ti
titanium | V
Variadium | Cr
chromium | Mn
manganese | Fe
fron | Co
cobat | 28
Ni
nickel | Cu
copper | Zn
and | Ga
gallum | Ge
germanism | As
arsenic | Se
selentum | Br
bromne | 36
Kr
krypton | | 37.090 | 40.078(4) | 44.956 | 47.867 | 50 942 | 61996 | 54 938 | 55.845(2)
44 | 58,933
45 | 58.693 | 63 546(3) | 48 | 69 723
49 | 72.630(8)
50 | 74.922 | 78.975(tt)
52 | (79.901.79.907)
53 | 83.790(2)
54 | | Rb | Sr | Y | Zr | Nb | Mo | Tc
technetium | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | | 85.468 | 87.62 | 88.50e | 91 224(2) | 92.906 | 96.96 | technolis | 101 07(2) | 182.91 | 106.42 | 107.87 | 112.41 | 114.82 | 118.71 | 121.76 | 127.60(3) | 126.90 | 131.29 | | CS
caesium | 56
Ba
barium | 57-71
lanthanoids | 72
Hf
hafnium | 73
Ta | 74
W
tungsten | 75
Re | 76
Os
comium | 77
Ir
iidum | 78
Pt
platinum | 79
Au
gold | Hg
mercury | 81
TI
thallium | Pb
lead | Bi
bismuth | Po
potonicm | 85
At
astatine | Rn
sadon | | 87
Fr
francium | 88
Ra
radium | 89-103
actinoids | 104
Rf
rutherfordium | 105
Db
dubnium | 106
Sg
seaborgium | 107
Bh
bohrium | 108
Hs
hassium | 109
Mt
meitherium | 110
Ds
darmstadium | 111 Rg
roentgenium | 112
Cn
copernicium | 113
Nh
nhonum | 114
FI
flerovium | 115
Mc
moscovium | 116
Lv
Ivermorium | 117
Ts
tennessine | Og
oganesso | 57
La
lentenum | Ce
certum | 59
Pr
praseodymium | 60
Nd
neodymium | 61
Pm
promethium | 62
Sm
samatum | 63
Eu
europlum | 64
Gd
gadotnium | 65
Tb
terbium | 66
Dy
dysprosium | 67
Ho
holmlum | 68
Er
orbum | 69
Tm
thulium | 70
Yb
ytterblum | 71
Lu
lutetium | | | | | 138.91 | 140.12 | 142.91 | 14424 | 93 | 150.36(2) | 151.56
95 | 157.25(3) | 158.93 | 192.50 | 184.93 | 107.26 | 168.93 | 173.08 | 174.97 | | | | | Ac | Th | Pa
Pa | U 92 | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No
No | Lr | #### **Main features** - Energy range 4.5 -30 keV - Minimum photon flux: 10¹¹(ph/s) - Harmonic rejection <10⁻⁴ (Si111) - Spot properties on sample: - For the metrology station about 100x100 μm² - For the PD/XAS station: between 100 μm and 3 mm, in horizontal. - Vertically, it should be about 1 mm - Vertical collimation of the beam on sample better than 20 μrad FWHM. ## Νότος: Optical layout - M1 cylindrical dynamic meridional bent mirror for collimation - Fixed exit Double Crystal Monochromator - M2 toroidal dynamic meridional bent mirror for focusing ## **Three Experimental End stations** HRPD-XAS station in EH: High Resolution PD measurements equipped with a two circles diffractometer and a 10channel Ge(111) analyzer with the possibility to combine them with XAS measurements. The multipurpose station in EH: XAS investigation in transmission and fluorescence mode, fast PD measurements, combination of PD and XAS experiments and metrology measurements. Station A in OH: 2 m length free space suitable to test equipment for metrology activity ## **Three Experimental End stations** HRPD-XAS station in EH: High Resolution PD measurements equipped with a two circles diffractometer and a 10-channel Ge(111) analyzer with the possibility to combine them with XAS measurements. The **multipurpose station** in EH: XAS investigation in transmission and fluorescence mode, fast PD measurements, combination of PD and XAS experiments and metrology measurements. #### **Multipurpose station** Requirements of the station: - Flexible and open space for metrology activity and for XAS and PD experiments - Define standard configuration for XAS and PD measurements **Concept design** #### Standard configuration for XAS and PD: - 3 ion chambers for XAS measurements in transmission - Multi-channel SDD 90° with respect X-Rays beam - 2D detector for PD measurements - Motorized stage at sample position Not available in 2021-I **Expected for September 2021** #### **HRPD & XAS station** - two circles diffractometer and a 10-channels Ge(111) analyzer - Position sensitive detector for PD - 3 ion chambers for XAS measurements in transmission #### Capability of NOTOS for the call 2021-I #### **Optical performance** **Energy range**: <u>7-23 KeV</u> **Energy resolution**: $\Delta E/E < 5E^{-4}$ with Si(111) Number of Photons on the sample: >5E+9 ph/s at 20 keV (250 mA) Beam size: horizontal 0.5 - 5 mm (defined by slits), vertical: down to 0.5 mm Working geometry: PD: transmission, XAS: transmission **End station available: HRPD-XAS** Sample environment: **PD**: capillary; **XAS**: cell for self-supported pellet for transmission measurement **Temperature of sample:** PD: Cryostream (100-450 K) and Hot Blower (RT to 950 °C); XAS (RT to 550 °C) Only inert gas and 20%O₂/He will be available Few days will be available in the next semester # Scheduling of development - Silicon Drift Detector for XAS: July 2021 - PSD detector for PXRD: September 2021 - Focusing mirror M2 : September 2021 - Multipurpose endstation: September 2021 - Gas system for reactive gas: November 2021 - Capillary setup for operando experiment: November 2021 #### **Optical performance** Energy range: 4.5-25 KeV **Energy resolution**: $\Delta E/E < 2E^{-4}$ with Si(111) Number of Photons on the sample: >E+11 ph/s at 20 keV (250 mA) Min. Beam size: $100 \, \mu m \times 100 \, \mu m$ Working geometry: PD: transmission, XAS: transmission & fluorescence **End station available: HRPD&XAS + Multipurpose stations** #### Νότος Team Giovanni Agostini gagostini@cells.es Carlos Escudero cescudero @cells.es Dominique Heinis dheinis@cells.es Oriol Vallcorba ovallcorba@cells.es https://www.cells.es/en/beamlines/bl16-notos In the Autumn meeting to receive a feedback for experimental setup/reactive gas system will be organized Time for questions/comments! # Νότος 2021_I First proposal call for Νότος beamline (extra slides) # Reactive gas system for Νότος | Gas | Proposed | Condition requested by expert users | | | Connect
or / | Safety | Comments (dedicated gas line or not and installation inside or outside gas | | |---|---------------------------------|---------------------------------------|--------|------|-----------------|------------|--|--| | (Purity and volume) | concentration | [c] _{max} during
reaction | | | Injection | | cabinet) | | | H_2 | 100% | 100% | 1 - 80 | 800 | E | | Dedicated Gas line (always
available) / IN | | | CO ₂ | 100% | 30% | 1 - 80 | 950 | C | \Diamond | Dedicated Gas line (always available) / OUT | | | O ₂ ^a | 20% | 20% | 1 - 5 | 400 | M | \Diamond | Dedicated Gas line (always available) / OUT | | | Synthetic air | 100% | - | - | 1000 | B (?) | \Diamond | OUT | | | СО | 100% | 50% | 1 – 50 | 450 | E | | Dedicated Gas line (always
available) / IN | | | NH3ª | X% ^b | 5-6% | 1 | 450 | M | ♦ | OUT | | | N ₂ O ^a | 20% (info
requested for 40%) | 20% | 1 - 5 | 400 | М | ♦ | OUT | | | NO ^a | X% ^b | 5% | 1 | 450 | M | ♦ | OUT | | | NO ₂ (+21% O ₂) ^a | X% ^b | 5000 ppm | 1 | 450 | M | ♦ | OUT | | | N_2 | 100% | 50% | 1 - 80 | 400 | C | \Diamond | Ion Chamber, in Exp Hall | | | He | 100% | | 1 - 80 | | С | \Diamond | Dedicated Gas line (always available) /
OUT + Ion Chamber, in Exp Hall | | ^a All mixtures are diluted in He and if cylinders are acquired from Abelló-Linde the cylinder connector is always M ^b Always below the <u>highest percentage still considered inert</u> (data corroborated with Abelló-Linde) and considering limitations from manufacturer # Reactive gas system for Νότος | Ax | 100% | | 1 - 80 | 1000 | С | \Diamond | Dedicated Gas line (always available) / OUT + Ion Chamber, in Exp Hall | |--|-----------------|-----------|--------|------|---|------------|--| | Kr | 100% | | | | С | \Diamond | Ion Chamber, in Exp Hall | | CH ₄ | 100% | 50% | 1-5 | 950 | E | | | | Ethane | 100% | 50% | 1-5 | 700 | E | | | | Propane | 100% | 50% | 1 - 5 | 700 | E | | | | Butane | 100% | - | - | - | E | | One dedicated shared line for all
HCs / IN | | Ethylene | 100% | - | - | | E | | | | Propylene | 100% | - | - | | E | | | | Butadiene | 100% | - | - | | E | | | | *H ₂ S ^a | X% ^b | - | - | - | M | \Diamond | Dedicated Gas line / IN (another flammable could be used instead) | | $\mathrm{H}_2\mathrm{O}$ | | - | 1 - 20 | 950 | | | Thinking housened of | | <u>MeOH</u> | | | | | | | Injection by means of: | | EtOH | | | | | | | 1 | | Other Alcohols Guaiacol & other oxygenated | | | | | | | 1) Syringe pump (1 bar) 2) HPLC pump (likely up to 5-10 | | organic reactants | | - | 60 | 250 | | | bar is reasonable) | | Formic acid & other acids | | - | 20 | ? | | | 3) Bubbler with Inert Gas | | Organic comp (propane, benzene, toluene etc) <5000 ppm | <5000 ppm | <5000 ppm | 1 | 500 | | | | ^a All mixtures are diluted in He and if cylinders are acquired from Abelló-Linde the cylinder connector is always M ^b Always below the <u>highest percentage still considered inert</u> (data corroborated with Abelló-Linde) and considering limitations from manufacturer # Reactive gas system for Νότος #### Total number of gas lines: 10 | number | Gas type | Note | Connector type | Gas cabinet | |--------|-----------------|--|----------------|-------------| | 2 | Flammable | H ₂ + others flammables (flammable sensors, inside cabinet and close to dosing point) | Е | Y | | 1 | СО | Dedicated gas line, sensor | Е | Y | | 1 | H_2S | Optional. Another flammable gas can be used instead | M | Y | | 2 | Inert | 1 for He + <u>Ar</u> for internal calibration MS | С | N | | 1 | CO_2 | Compatible with N ₂ O. Be able to use mixture if needed | C (U) or M | N | | 1 | O_2 | O ₂ 20%, inert | M | N | | 2 | Mixture | NO; NO ₂ ; NH ₃ , inert | M | N |