

2021_I First proposal call for Νότος beamline

Νότος Team

Giovanni Agostini gagostini@cells.es

Carlos Escudero cescudero@cells.es

Dominique Heinis dheinis@cells.es

Oriol Vallcorba ovallcorba@cells.es

Nότος: description

Scientific case

- Hard X-ray beamline
- Multi-activities capabilities:
 - → X-rays Absorption Spectroscopy (XAS)
 - → X-Rays Diffraction (XRD)
 - → metrology applications
- Study of the electronic structure, short (XAS) and long range order (XRD):
 - → chemistry
 - → catalysis
 - → energy science
 - nanomaterial and condensed matter
 - environmental science
- Focused on in situ and operando measurements on heterogeneous catalysis and electrochemistry
- Tests and improvement of high precision mechanical components, performances of detector systems, carrying out new methodologies and concepts to improve beamline instruments

1 H hydrogen 1,008 1,0078, 1,00821	2			к	-edge							13	14	15	16	17	He helium
3 Li ithium 0.34 [6.508, 6.997] 11 Na	Be beryllum 9,0122 12 Mg	L-edge									13 Al	6 C carbon 12.211 [12.000, 12.012] 14 Si	15 P	8 O 0xyygen 15.960, 16.000] 16 S	9 F fluorine 13.998 17 CI	10 Ne neon 20.180 18 Ar	
sodium 22.990	magnesium 24.305 [24.304, 24.307]	3	4	5	6	7	8	9	10	-11	12	aluminium 26,982	silicon 20.005 [28.064, 28.086]	phosphorus 30,974	Sulfur 32.00 [32.059, 32.076]	chlorine 35.45 [35.446, 35.457]	argon 39,948
19 K potassium	Ca calcium	Sc scandium	Ti titanium	V Variadium	Cr chromium	Mn manganese	Fe fron	Co cobat	28 Ni nickel	Cu copper	Zn and	Ga gallum	Ge germanism	As arsenic	Se selentum	Br bromne	36 Kr krypton
37.090	40.078(4)	44.956	47.867	50 942	61996	54 938	55.845(2) 44	58,933 45	58.693	63 546(3)	48	69 723 49	72.630(8) 50	74.922	78.975(tt) 52	(79.901.79.907) 53	83.790(2) 54
Rb	Sr	Y	Zr	Nb	Mo	Tc technetium	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.468	87.62	88.50e	91 224(2)	92.906	96.96	technolis	101 07(2)	182.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60(3)	126.90	131.29
CS caesium	56 Ba barium	57-71 lanthanoids	72 Hf hafnium	73 Ta	74 W tungsten	75 Re	76 Os comium	77 Ir iidum	78 Pt platinum	79 Au gold	Hg mercury	81 TI thallium	Pb lead	Bi bismuth	Po potonicm	85 At astatine	Rn sadon
87 Fr francium	88 Ra radium	89-103 actinoids	104 Rf rutherfordium	105 Db dubnium	106 Sg seaborgium	107 Bh bohrium	108 Hs hassium	109 Mt meitherium	110 Ds darmstadium	111 Rg roentgenium	112 Cn copernicium	113 Nh nhonum	114 FI flerovium	115 Mc moscovium	116 Lv Ivermorium	117 Ts tennessine	Og oganesso
			57 La lentenum	Ce certum	59 Pr praseodymium	60 Nd neodymium	61 Pm promethium	62 Sm samatum	63 Eu europlum	64 Gd gadotnium	65 Tb terbium	66 Dy dysprosium	67 Ho holmlum	68 Er orbum	69 Tm thulium	70 Yb ytterblum	71 Lu lutetium
			138.91	140.12	142.91	14424	93	150.36(2)	151.56 95	157.25(3)	158.93	192.50	184.93	107.26	168.93	173.08	174.97
			Ac	Th	Pa Pa	U 92	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No No	Lr

Main features

- Energy range 4.5 -30 keV
- Minimum photon flux: 10¹¹(ph/s)
- Harmonic rejection <10⁻⁴ (Si111)
- Spot properties on sample:
 - For the metrology station about 100x100 μm²
 - For the PD/XAS station: between 100 μm and 3 mm, in horizontal.
 - Vertically, it should be about 1 mm
 - Vertical collimation of the beam on sample better than 20 μrad FWHM.

Νότος: Optical layout

- M1 cylindrical dynamic meridional bent mirror for collimation
- Fixed exit Double Crystal Monochromator
- M2 toroidal dynamic meridional bent mirror for focusing

Three Experimental End stations

HRPD-XAS station in EH:
High Resolution PD
measurements equipped
with a two circles
diffractometer and a 10channel Ge(111) analyzer
with the possibility to
combine them with XAS
measurements.

The multipurpose station in EH: XAS investigation in transmission and fluorescence mode, fast PD measurements, combination of PD and XAS experiments and metrology measurements.

Station A in OH: 2 m length free space suitable to test equipment for metrology activity

Three Experimental End stations

HRPD-XAS station in EH: High Resolution PD measurements equipped with a two circles diffractometer and a 10-channel Ge(111) analyzer with the possibility to combine them with XAS measurements.

The **multipurpose station** in EH: XAS investigation in transmission and fluorescence mode, fast PD measurements, combination of PD and XAS experiments and metrology measurements.

Multipurpose station

Requirements of the station:

- Flexible and open space for metrology activity and for XAS and PD experiments
- Define standard configuration for XAS and PD measurements

Concept design

Standard configuration for XAS and PD:

- 3 ion chambers for XAS measurements in transmission
- Multi-channel SDD 90° with respect X-Rays beam
- 2D detector for PD measurements
- Motorized stage at sample position

Not available in 2021-I **Expected for September 2021**

HRPD & XAS station

- two circles diffractometer and a 10-channels Ge(111) analyzer
- Position sensitive detector for PD
- 3 ion chambers for XAS measurements in transmission

Capability of NOTOS for the call 2021-I

Optical performance

Energy range: <u>7-23 KeV</u>

Energy resolution: $\Delta E/E < 5E^{-4}$ with Si(111)

Number of Photons on the sample: >5E+9 ph/s at 20 keV (250 mA)

Beam size: horizontal 0.5 - 5 mm (defined by slits), vertical: down to 0.5 mm

Working geometry: PD: transmission, XAS: transmission

End station available: HRPD-XAS

Sample environment:

PD: capillary; **XAS**: cell for self-supported pellet for transmission measurement

Temperature of sample:

PD: Cryostream (100-450 K) and Hot Blower (RT to 950 °C); XAS (RT to 550 °C)

Only inert gas and 20%O₂/He will be available

Few days will be available in the next semester

Scheduling of development

- Silicon Drift Detector for XAS: July 2021
- PSD detector for PXRD: September 2021
- Focusing mirror M2 : September 2021
- Multipurpose endstation: September 2021
- Gas system for reactive gas: November 2021
- Capillary setup for operando experiment: November 2021

Optical performance

Energy range: 4.5-25 KeV

Energy resolution: $\Delta E/E < 2E^{-4}$ with Si(111)

Number of Photons on the sample: >E+11 ph/s at 20 keV (250 mA)

Min. Beam size: $100 \, \mu m \times 100 \, \mu m$

Working geometry: PD: transmission, XAS: transmission & fluorescence

End station available: HRPD&XAS + Multipurpose stations

Νότος Team

Giovanni Agostini gagostini@cells.es

Carlos Escudero cescudero @cells.es

Dominique Heinis dheinis@cells.es

Oriol Vallcorba ovallcorba@cells.es

https://www.cells.es/en/beamlines/bl16-notos

In the Autumn meeting to receive a feedback for experimental setup/reactive gas system will be organized

Time for questions/comments!

Νότος

2021_I

First proposal call for Νότος beamline

(extra slides)

Reactive gas system for Νότος

Gas	Proposed	Condition requested by expert users			Connect or /	Safety	Comments (dedicated gas line or not and installation inside or outside gas	
(Purity and volume)	concentration	[c] _{max} during reaction			Injection		cabinet)	
H_2	100%	100%	1 - 80	800	E		Dedicated Gas line (always available) / IN	
CO ₂	100%	30%	1 - 80	950	C	\Diamond	Dedicated Gas line (always available) / OUT	
O ₂ ^a	20%	20%	1 - 5	400	M	\Diamond	Dedicated Gas line (always available) / OUT	
Synthetic air	100%	-	-	1000	B (?)	\Diamond	OUT	
СО	100%	50%	1 – 50	450	E		Dedicated Gas line (always available) / IN	
NH3ª	X% ^b	5-6%	1	450	M	♦	OUT	
N ₂ O ^a	20% (info requested for 40%)	20%	1 - 5	400	М	♦	OUT	
NO ^a	X% ^b	5%	1	450	M	♦	OUT	
NO ₂ (+21% O ₂) ^a	X% ^b	5000 ppm	1	450	M	♦	OUT	
N_2	100%	50%	1 - 80	400	C	\Diamond	Ion Chamber, in Exp Hall	
He	100%		1 - 80		С	\Diamond	Dedicated Gas line (always available) / OUT + Ion Chamber, in Exp Hall	

^a All mixtures are diluted in He and if cylinders are acquired from Abelló-Linde the cylinder connector is always M

^b Always below the <u>highest percentage still considered inert</u> (data corroborated with Abelló-Linde) and considering limitations from manufacturer

Reactive gas system for Νότος

Ax	100%		1 - 80	1000	С	\Diamond	Dedicated Gas line (always available) / OUT + Ion Chamber, in Exp Hall
Kr	100%				С	\Diamond	Ion Chamber, in Exp Hall
CH ₄	100%	50%	1-5	950	E		
Ethane	100%	50%	1-5	700	E		
Propane	100%	50%	1 - 5	700	E		
Butane	100%	-	-	-	E		One dedicated shared line for all HCs / IN
Ethylene	100%	-	-		E		
Propylene	100%	-	-		E		
Butadiene	100%	-	-		E		
*H ₂ S ^a	X% ^b	-	-	-	M	\Diamond	Dedicated Gas line / IN (another flammable could be used instead)
$\mathrm{H}_2\mathrm{O}$		-	1 - 20	950			Thinking housened of
<u>MeOH</u>							Injection by means of:
EtOH							1
Other Alcohols Guaiacol & other oxygenated							1) Syringe pump (1 bar) 2) HPLC pump (likely up to 5-10
organic reactants		-	60	250			bar is reasonable)
Formic acid & other acids		-	20	?			3) Bubbler with Inert Gas
Organic comp (propane, benzene, toluene etc) <5000 ppm	<5000 ppm	<5000 ppm	1	500			

^a All mixtures are diluted in He and if cylinders are acquired from Abelló-Linde the cylinder connector is always M

^b Always below the <u>highest percentage still considered inert</u> (data corroborated with Abelló-Linde) and considering limitations from manufacturer

Reactive gas system for Νότος

Total number of gas lines: 10

number	Gas type	Note	Connector type	Gas cabinet
2	Flammable	H ₂ + others flammables (flammable sensors, inside cabinet and close to dosing point)	Е	Y
1	СО	Dedicated gas line, sensor	Е	Y
1	H_2S	Optional. Another flammable gas can be used instead	M	Y
2	Inert	1 for He + <u>Ar</u> for internal calibration MS	С	N
1	CO_2	Compatible with N ₂ O. Be able to use mixture if needed	C (U) or M	N
1	O_2	O ₂ 20%, inert	M	N
2	Mixture	NO; NO ₂ ; NH ₃ , inert	M	N

